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Weakly-Supervised Text Classification
 Any labeled documents are not allowed, suface names or limited word-level 
descriptions of each category can be used.
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Weakly-supervised text classification(2018CIKM)

Some pseudo label is 
not correct

https://chaozhang.org/papers/2018-cikm-westclass.pdf


Type of fine tuning 
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Fine-Tuning
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Head Token Fine-Tuning

Introduction

Classifier
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Prompt-Base Fine-Tuning(MLM)

Introduction



8

Prompt-Base Fine-Tuning(ELECTRA)

Introduction

❌

Prompting ELECTRA(EMNLP2022)

https://aclanthology.org/2022.emnlp-main.780.pdf


Cast the word prediction problem into a binary classification problem

9

ELECTRA Pre-train model

Introduction

 ELECTRA(ICLR 2020)

Replace masked 
tokens of the input text

Predict each token is the  
original or replaced 

https://arxiv.org/pdf/2003.10555.pdf


Method
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Zero-Shot Prompting for Pseudo Label Acquisition
Construct input with the template
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It is to die for !
It was good

It is to die for !
It was bad

C(good)

C(bad)

✔

❌



Zero-Shot Prompting for Pseudo Label Acquisition
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Zero-Shot Prompting for Pseudo Label Acquisition
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Zero-Shot Prompting for Pseudo Label Acquisition
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Noise-Robust Training with Iterative Ensemble
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Weakly 
Classifier

Class result decrease by noise
(large gap between fully-supervised ) 

pseudo labelsnoisy range 
(15%-50%)

Weakly 
Classifier

Iterative 
Ensemble

Ensure the quality of pseudo labels



Noise-Robust Training with Iterative Ensemble
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Noise-Robust Training with Iterative Ensemble
Utilize two PLM fine-tuning methods to ensure the quality of pseudo labels

improve the self-training quality 

1. Head token fine-tuning:  Capturing the information of the entire document

2. Prompt-based finetuning: Focusing more on the context surrounding the 
label name.
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Noise-Robust Training with Iterative Ensemble
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Classifier

         :Candidate Pseudo label

           : Intial Pseudo label
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         :Candidate Pseudo label

Prompt          :Candidate Pseudo label

Prompt base only requires a small amount of data to achieve competitive 
performance with head token fine-tuning

Noise-Robust Training with Iterative Ensemble



Noise-Robust Training with Iterative Ensemble
Only those most confident ones into the pseudo label pool to alleviate the 
error accumulation problem.
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         :Candidate Pseudo label Intersection



Experiment
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DataSet
● Topic 

○ Ag_News(New topic  with 4 class)
○ 20_News (New topic with 20 class)
○ NYT-Topics (New York Times context: imbalanced with 9 class)
○ NYT-Fine (New York Times context: imbalanced & fine-grained  with 9 class)
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● Semantic(with 2 class)
○ Yelp(Review:Semantic analysis )
○ IMDB(Movie Review: semantic analysis  )
○ Amazon(Amazon Review:semantic analysis )



Compared Methods
● Weakly method compare

○ WeSTClass
○ ConWea
○ LOTClass
○ XClass
○ ClassKG

● Pre-train model compare
○ RoBERTa (0-shot):Head Token
○ ELECTRA (0-shot):Head Token
○ Fully- Supervised BERT baseline
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WeSTClass
Define the source of weakly supervision
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Weakly-supervised text classification(2018CIKM)

https://chaozhang.org/papers/2018-cikm-westclass.pdf


ConWea
Source.2
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LOTClass
Source.1
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XClass
Source 1
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ClassKG
Source1
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Compared Methods
Although ClassKG achieves the  better results  ClassKG uses more time  
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Micro-F1/Macro-F1



Compared Methods
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Micro-F1/Macro-F1



Ablation Study
● Two-Stage:Directly trains classifier using pseudo labels from zero-shot 

prompting

● Single-View ST: Standard self-training method(only using zero-shot 
pseudo label)

● Co-Training: W/O Regularize in step Intersection
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Ablation Study
● The single-view and two-stage method is not stable.
● Co-training ensures the consistency of model predictions, yielding great 

results.
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Micro-F1/Macro-F1



Ablation Study
The PIEClass can surpass the bottleneck 

of traditional self-learning.

Traditional self-learning micor-f1 will

 be flattened after several iterations.
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Quantities and qualities of the pseudo labels
We can see at the first servals iteration the pseudo label  qualities in well.
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Conclusion
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Conclusion
1. Using zero-shot PLM prompting to assign pseudo labels based on 

contextualized text understanding.

2. Implementing a noise-robust iterative ensemble to expand pseudo 
labels while ensuring their quality.
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Personal Comment

● In this paper, the noise-robust approach is crucial. Fully embracing it 
could significantly improve model adaptability in noisy environments.

39
Conclusion


