PIEClass:

Task

Weakly-Supervised Text Classification with Prompting and Method Noise-Robust Iterative Ensemble Training

Source: EMNLP 2023 Advisor: JIA-LING KOH Speaker: FAN-CHI-YU Date:2023/02/27

Outline

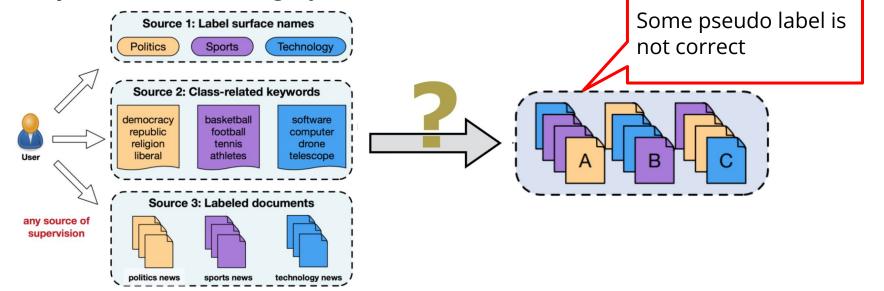
• Introduction

- Method
- Experiment
- Conclusion

Introduction

Weakly-Supervised Text Classification

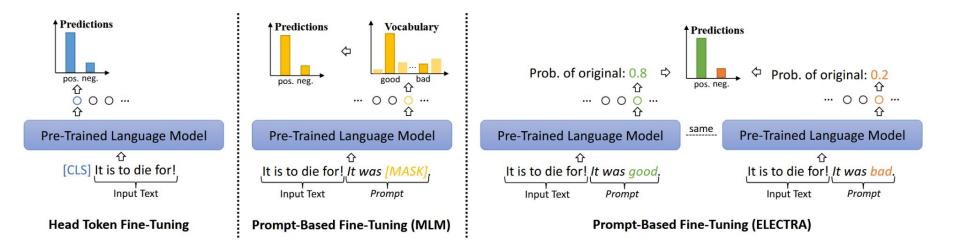
Any **labeled documents** are not allowed, **suface names** or **limited word-level descriptions** of each category can be used.



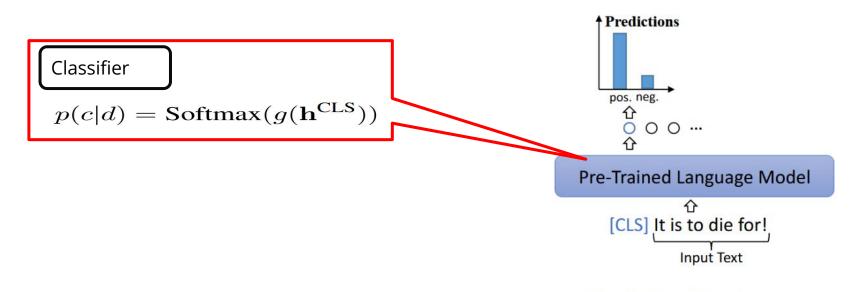
Introduction

Fine-Tuning

Type of fine tuning



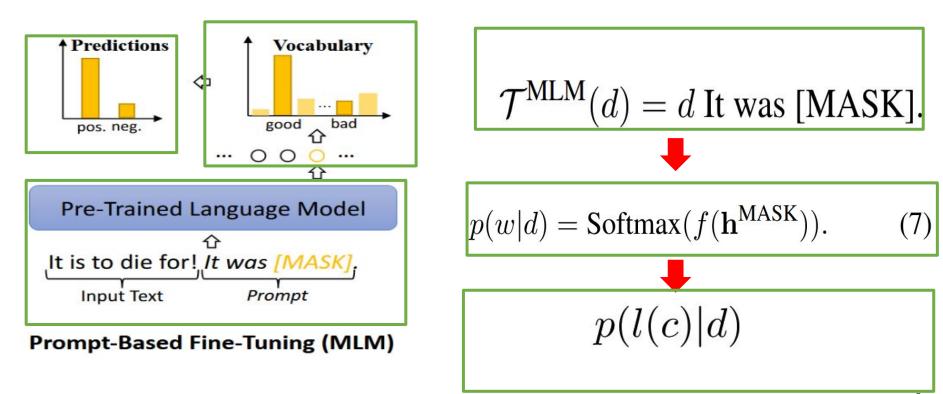
Head Token Fine-Tuning



Head Token Fine-Tuning

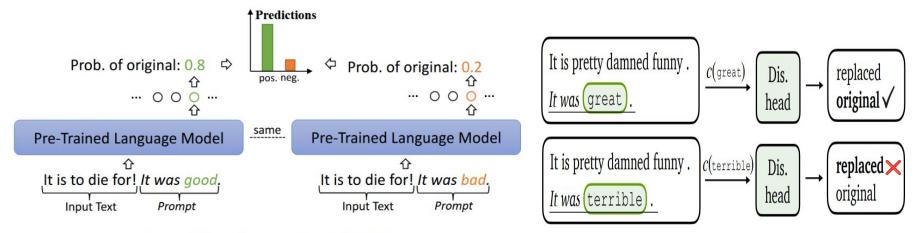
Introduction

Prompt-Base Fine-Tuning(MLM)



Introduction

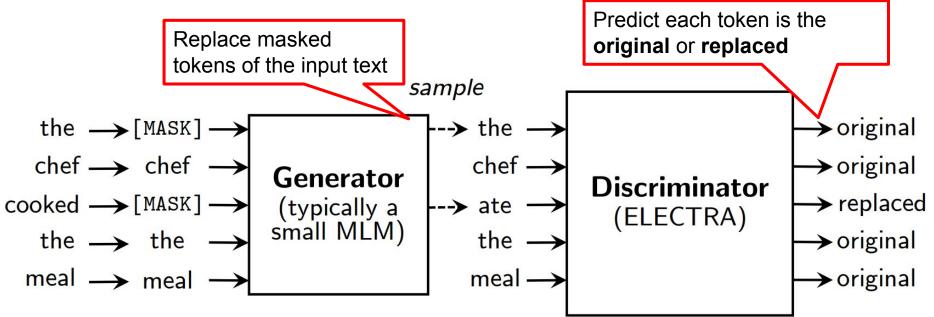
Prompt-Base Fine-Tuning(ELECTRA)

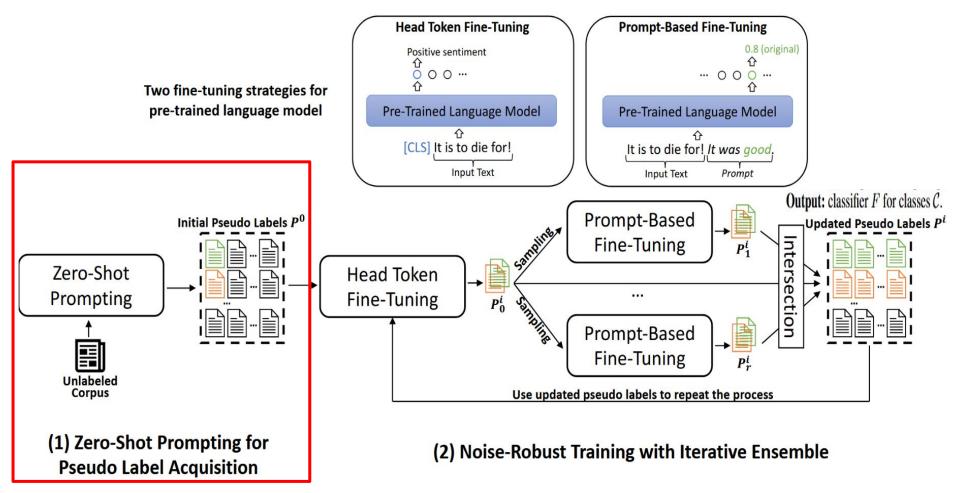


Prompt-Based Fine-Tuning (ELECTRA)

ELECTRA Pre-train model

Cast the word prediction problem into a binary classification problem





It was bad

Construct input with the template

$$\mathcal{T}^{\text{ELECTRA}}(d, \text{good}) = d \text{ It was } \underline{\text{good}}.$$

$$\mathcal{T}^{\text{ELECTRA}}(d, \text{bad}) = d \text{ It was } \underline{\text{bad}}.$$

$$\text{It is to die for !} \xrightarrow{\text{C(good)}} \xrightarrow{\text{Dis.}} \xrightarrow{\text{head}} \mathcal{T}^{\text{ELECTRA}}(d, \text{bad}) = d \text{ It was } \underline{\text{bad}}.$$

Input: A corpus \mathcal{D} ; a set of classes \mathcal{C} and their label names $l(c), c \in \mathcal{C}$; a pre-trained language model E; a template \mathcal{T} for prompting.

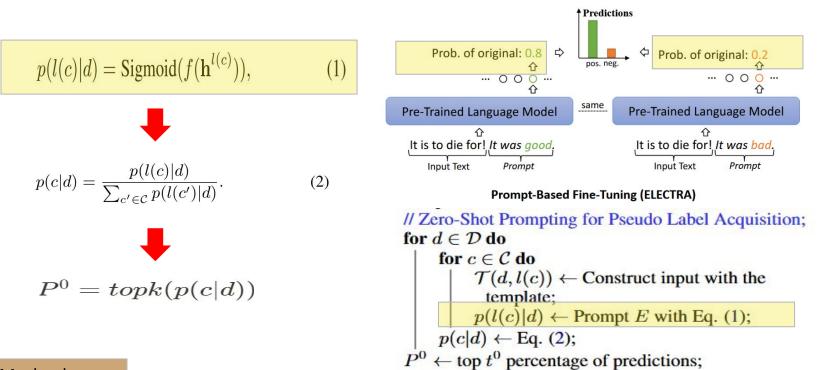
// Zero-Shot Prompting for Pseudo Label Acquisition;for $d \in \mathcal{D}$ dofor $c \in \mathcal{C}$ do $\left| \begin{array}{c} \mathcal{T}(d, l(c)) \leftarrow \text{Construct input with the template;} \\ p(l(c)|d) \leftarrow \text{Prompt } E \text{ with Eq. (1);} \\ p(c|d) \leftarrow \text{Eq. (2);} \\ P^0 \leftarrow \text{top } t^0 \text{ percentage of predictions;} \\ \end{array} \right|$

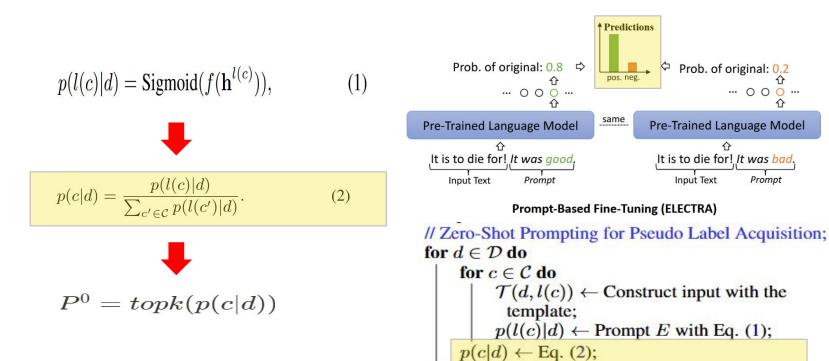
head

replaced original

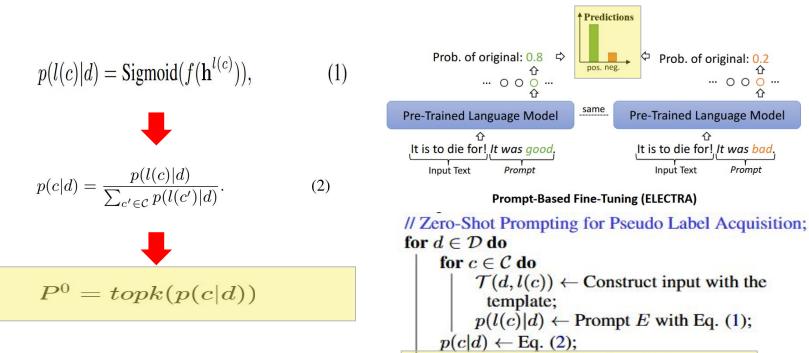
replaced ×

original

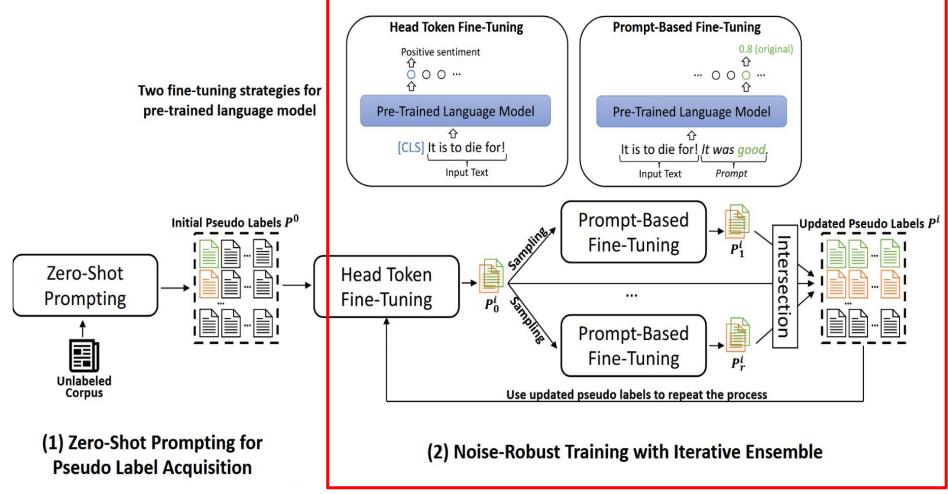


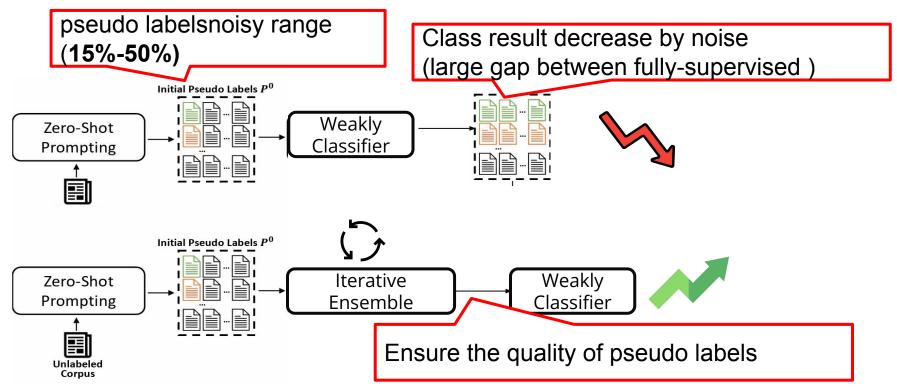


 $P^0 \leftarrow \text{top } t^0 \text{ percentage of predictions;}$

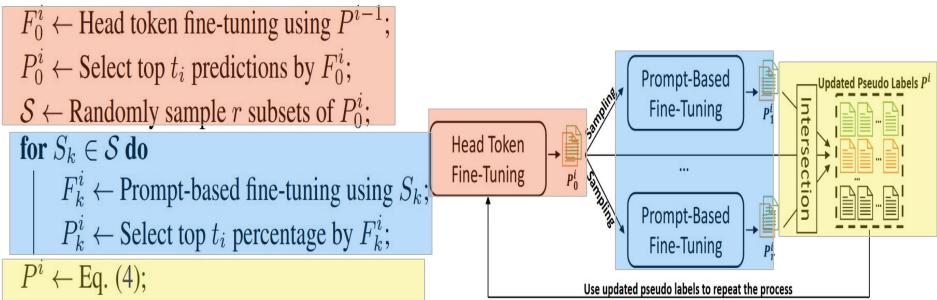


 $P^0 \leftarrow \text{top } t^0 \text{ percentage of predictions;}$





for $i \leftarrow 1$ to T do

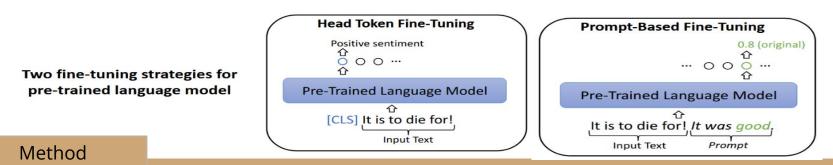


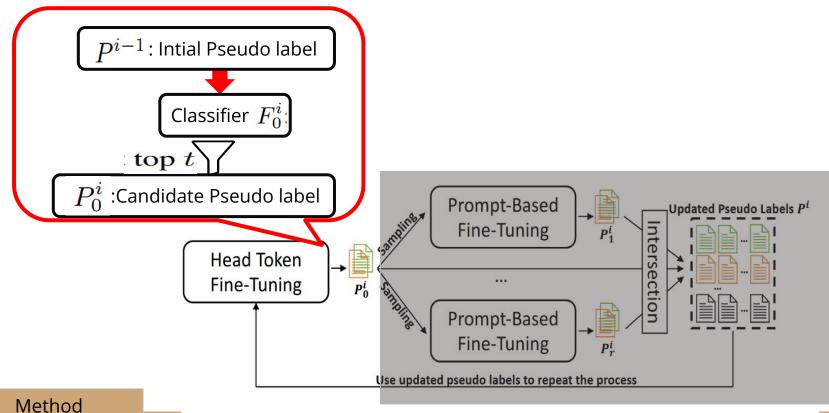
Utilize two PLM fine-tuning methods to ensure the quality of pseudo labels improve the self-training quality

1. Head token fine-tuning: Capturing the information of the entire document

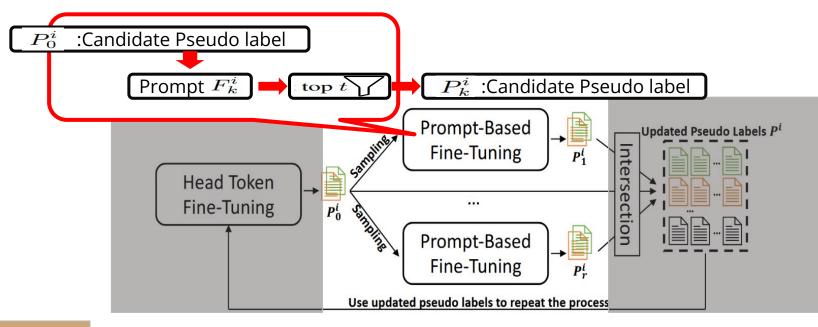
2. **Prompt-based finetuning:** Focusing more on the context surrounding the

19

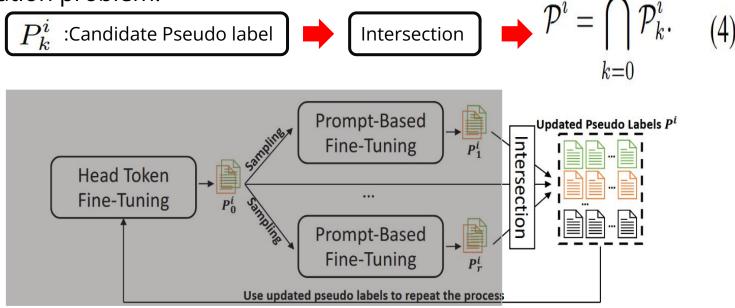




Prompt base only requires a small amount of data to achieve competitive performance with head token fine-tuning



Only those most confident ones into the pseudo label pool to alleviate the error accumulation problem.



Experiment

DataSet

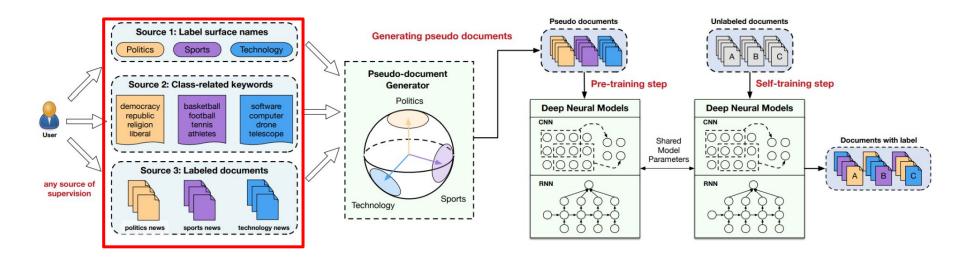
- Topic
 - Ag_News(New topic with 4 class)
 - 20_News (New topic with 20 class)
 - NYT-Topics (New York Times context: imbalanced with 9 class)
 - NYT-Fine (New York Times context: imbalanced & fine-grained with 9 class)
 - Semantic(with 2 class)
 - Yelp(Review:Semantic analysis)
 - IMDB(Movie Review: semantic analysis)
 - Amazon(Amazon Review:semantic analysis)

Compared Methods

- Weakly method compare
 - WeSTClass
 - ConWea
 - LOTClass
 - XClass
 - ClassKG
- Pre-train model compare
 - RoBERTa (0-shot):Head Token
 - ELECTRA (0-shot):Head Token
 - Fully- Supervised BERT baseline

WeSTClass

Define the source of weakly supervision



ConWea

Source.2

User-Provided Seed Words

Class	Seed Words			
Soccer	soccer, goal, penalty			
Law	law, judge, court			

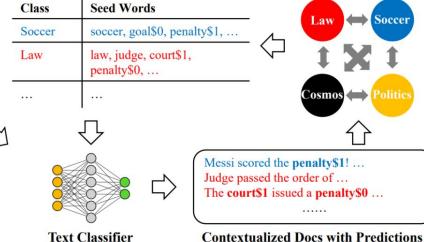
Raw Docs

Messi scored the penalty! ... Judge passed the order of ... The court issued a penalty ...

]	Extended Seed Words			
Class	Seed Words	22	Class	
Soccer	soccer, goal\$0, goal\$1,	-	Socce	1
	penalty\$0, penalty\$1,	-	Law	
Law	law, judge, court\$0, court\$1	_		•
			••••	
	Contextualized Docs	Σ		
Judge pas	ored the penalty\$1 ! used the order of t\$1 issued a penalty\$0			-
The cour				

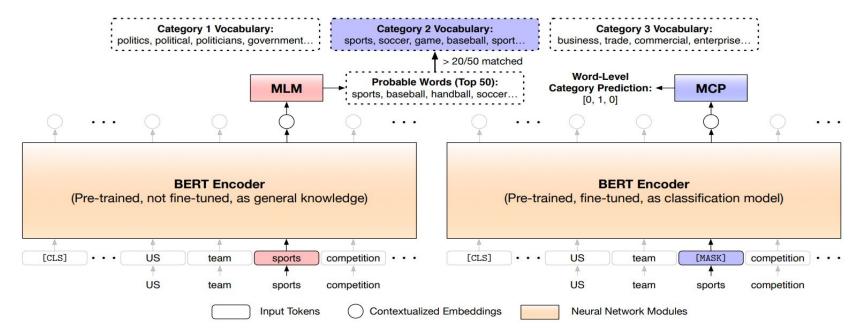
Contextualized & Expanded Seed Words

Comparative Ranking



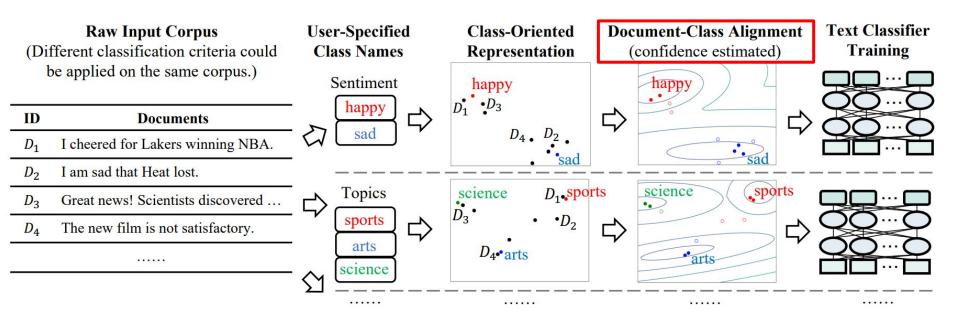
LOTClass

Source.1



XClass

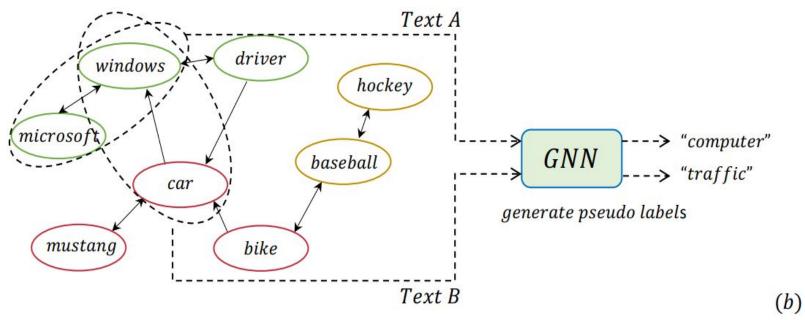
Source 1



Experiment

ClassKG

Source1



Experiment

Compared Methods

Although ClassKG achieves the better results ClassKG uses more time

Methods		AGNews	20News	NYT-Topics	NYT-Fine	Yelp	IMDB	Amazon
WeSTClass		0.823/0.821	0.713/0.699	0.683/0.570	0.739/0.651	0.816/0.816	0.774/-	0.753/-
ConWea		0.746/0.742	0.757/0.733	0.817/0.715	0.762/0.698	0.714/0.712	-/-	-/-
LOTClass		0.869/0.868	0.738/0.725	0.671/0.436	0.150/0.202	0.878/0.877	0.865/-	0.916/-
XClass		0.857/0.857	0.786/0.778	0.790/0.686	0.857/0.674	0.900/0.900	_/_	-/-
ClassKG [†]	,	0.881/0.881	<u>0.811</u> / 0.820	0.721/0.658	0.889/0.705	0.918/0.918	0.888/0.888	<u>0.926</u> /-
PIEClass ELECTRA+ELE	ECTRA	<u>0.884/0.884</u>	0.816 /0.817	0.832/0.763	0.910/0.776	0.957/0.957	0.931/0.931	0.937/0.937
Fully-Supervised		0.940/0.940	0.965/0.964	0.943/0.899	0.980/0.966	0.957/0.957	0.945/-	0.972/-
Micro-F1/Macro-	F1			XC LOTC PIEC Clas	Class 3hr	Run Time on 2		
Experiment					0	10 5	20 30	0 31

Compared Methods

Methods	AGNews	20News	NYT-Topics	NYT-Fine	Yelp	IMDB	Amazon
RoBERTa (0-shot) ELECTRA (0-shot)	0.581/0.529 0.810/0.806	0.507/0.445 [‡] 0.558/0.529	0.544/0.382 0.739/0.613	_/_ [‡] 0.765/0.619	0.812/0.808	0.784/0.780 0.803/0.802	0.788/0.783 0.802/0.801
PIEClass	0.010/0.000	0.556/0.529	0.757/0.015	0.705/0.019	0.820/0.820	0.803/0.802	0.002/0.001
ELECTRA+BERT	<u>0.884/0.884</u>	0.789/0.791	0.807/0.710	0.898/0.732	0.919/0.919	0.905/0.905	0.858/0.858
RoBERTa+RoBERTa ELECTRA+ELECTRA	0.895/0.895 0.884/0.884	0.755/0.760 [‡] 0.816 /0.817	0.760/0.694 0.832/0.763	-/- [‡] 0.910/0.776	0.920/0.920 0.957/0.957	<u>0.906/0.906</u> 0.931/0.931	0.912/0.912 0.937/0.937
Fully-Supervised	0.940/0.940	0.965/0.964	0.943/0.899	0.980/0.966	0.957/0.957	0.945/-	0.972/-

Micro-F1/Macro-F1

Ablation Study

• **Two-Stage**:Directly trains classifier using pseudo labels from zero-shot prompting

• **Single-View ST:** Standard self-training method(only using zero-shot pseudo label)

• **Co-Training:** W/O Regularize in step Intersection

Ablation Study

- The single-view and two-stage method is not stable.
- Co-training ensures the consistency of model predictions, yielding great results.

Methods	AGNews	20News	NYT-Topics	NYT-Fine	Yelp	IMDB	Amazon
Two-Stage	0.847/0.847	0.739/0.733	0.776/0.664	0.838/0.678	0.913/0.913	0.870/0.870	0.836/0.835
Single-View ST	0.871/0.871	0.736/0.737	0.757/0.668	0.853/0.695	0.912/0.912	0.846/0.846	0.892/0.892
Co-Training	0.877/0.877	0.795/0.791	0.818/0.715	0.877/0.744	0.948/0.948	0.925/0.925	0.930/0.930
PIEClass	0.884/0.884	0.816/0.817	0.832/0.763	0.910/0.776	0.957/0.957	0.931/0.931	0.937/0.937

Micro-F1/Macro-F1

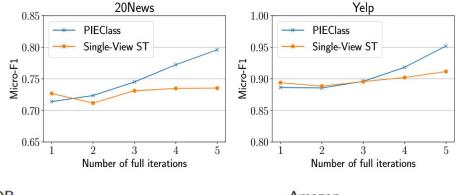
Ablation Study

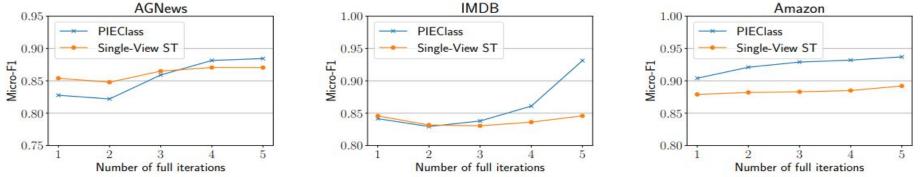
The PIEClass can surpass the bottleneck

of traditional self-learning.

Traditional self-learning micor-f1 will

be flattened after several iterations.

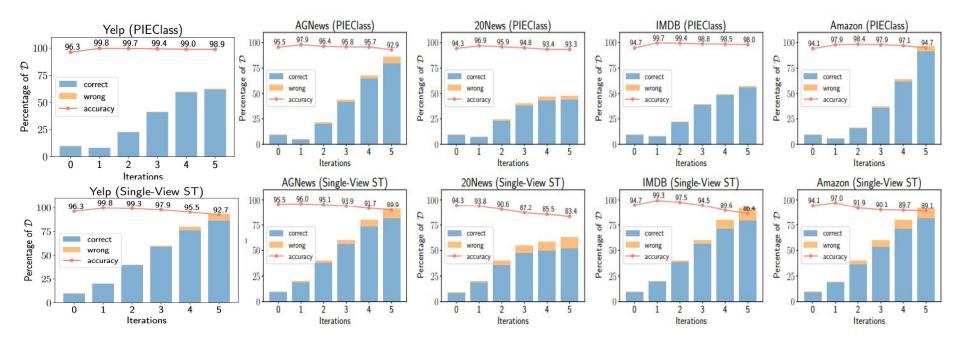




Experiment

Quantities and qualities of the pseudo labels

We can see at the **first servals iteration** the pseudo label qualities in well.



Experiment

Conclusion

Conclusion

1. Using zero-shot PLM prompting to assign pseudo labels based on contextualized text understanding.

2. Implementing a noise-robust iterative ensemble to expand pseudo labels while ensuring their quality.

Personal Comment

• In this paper, the noise-robust approach is crucial. Fully embracing it could significantly improve model adaptability in noisy environments.